B. Tech Degree IV Semester Examination, April 2010

ME 405 HYDRAULIC MACHINERY
 (2006 Scheme)

,

PART - A
(Answer $\boldsymbol{A L L}$ questions)
I. (a) Explain Buckingham's Pi Theorem.
(b) Describe Momentum equation applied to a control volume.
(c) Differentiate between Impulse and Reaction Turbines.
(d) What is specific speed? What is its importance?
(e) What is priming? On what types of pumps priming is necessary.
(f) What is 'slip' in reciprocating pumps? Is it possible to have a negative slip? How it occurs?
(g) With the help of a sketch explain working of a Hydraulic Ram.
(h) Differentiate between Vane pumps and Gear pumps? What are the common uses of these pumps?

PART - B
$(4 \times 15=60)$
II. A geometrically similar model of an air duct is built to $1 / 25$ scale and tested with water which is 50 times move viscous and 800 times denser than air. When tested under dynamically similar conditions, the pressure drop is $200 \mathrm{kN} / \mathrm{m}^{2}$ in the model. Find the corresponding pressure drop in the full scale prototype and express in cm of water.

OR

III. A $15 \mathrm{~m} / \mathrm{s}$ velocity jet of water 5 cm in diameter strikes perpendicularly on a flat smooth plate. Determine the force exerted by the jet on the plate, if (i) the plate is at rest (ii) it moves in the direction of jet with a velocity of $5 \mathrm{~m} / \mathrm{s}$. Also determine the work done in each case and the efficiency of jet in the second case.

IV.

The water jet in a pelton wheel is 8 cm in diameter and has a velocity of $93 \mathrm{~m} / \mathrm{s}$. The rotational speed of the wheel is 600 rpm and the deflection angle of the jet is 170°. If the speed ratio is 0.47 , determine the diameter of wheel and the power developed. OR

V.

VII. $\begin{aligned} & \text { A centrifugal pump rotates at } 1000 \text { rpm and delivers } 300 \text { liters } / \mathrm{sec} \text { of water. The } \\ & \text { impeller has a diameter of } 35 \mathrm{~cm} \text { and a width of } 5 \mathrm{~cm} \text { at the periphery. The blades } \\ & \text { tip angle are inclined backwards } 60^{\circ} \text { from the radius (The blade angle } 30^{\circ} \text {). } \\ & \text { Determine the velocity and direction of water as it leaves the impeller. }\end{aligned} \begin{aligned} & \text { With neat sketch explain working of: } \\ & \text { (i) Hydraulic intensifier } \\ & \text { OR (ii) Hydraulic Accumulator } \\ & \text { IX. } \\ & \text { Write notes on: } \\ & \text { (i) Surge tank }\end{aligned}$ (ii) Hydraulic press

